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Abstract. Results are presented of extensive numelid simulations of eledmn 
wave p d e t s  transmitted by horns. A detailed quantitative analySie is given of 
the c o k t i o n  of the electron wave by hom-like devices. It is demonstrated that 
the electron wave collimation effect -ot be described in t- of adiabatic wave 
expwion and semi-classical considerations. It is argued that, in the context of 
atomic-size electron beam sources, the collimation effect due to a possible hom-like 
structure in the metal-vacuum potential is mu& less than the effect stemming from 
the tunnel barrier itself. 

1. Introduction 

Recent experiments on atomic-size tips [I-41 have demonstrated that they act as un- 
usual electron beam sources, emitting electrons at fairly low applied voltages (a few 
thousand volts or less) with a small angular spread (of a few degrees). These proper- 
ties make such electron sources very attractive for applications to electron holography 
and electron interferometry [5-91. Extensive theoretical work [lo, 111 revealed that 
tunnelling through the metal-vacuum potential is the main physical mechanism de- 
termining the unusual properties of the emitted electron beams. 

Tunnelling through a potential barrier is only one of the mechanisms for collimat- 
ing an electron beam. In particular, it has been suggested [I21 that adiabatic mode 
selection [13-151 is mainly responsible for the peculiar properties of the electron beams 
emitted from atomic-size tips. The key ingredient of this description is the presence of 
a slowly varying, horn-like structure in the potential surrounding the tip and the as- 
sumption that the electron wave propagates adiabatically in this structure. However, 
the application of these ideas to the atomic-size tips seems unjustified 1161. 

Recent advances in fabricating quantum point contacts in GaAs heterostructures 
have opened up the possibility of performing ‘electron optics’ experiments in solids 
[17]. A prerequisite is the existence of a large electronic mean free path allowing 
the electron to move ballistically over a large (relative to the electron wavelength) 
distance. From the viewpoint of field-electron emission, motion in the vacuum region 
is replaced by ballistic motion in the solid. Just as for the electron-beam sources, it 
is of great interest to explore the possibility of focusing (collimating) electrons in the 
solid [NI. It has been demonstrated that magnetic fields [17-201 or an electrostatic 
lens 1211 can be used to focus the electrons. Furthermore it has been argued [17, 221 
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that the rounding of the entrance/exit plane of quantum point contact may act as a 
horn, leading to the collimation of the electron waves. 

It is important to recognize that electron waves emitted by atomic-size tips are 
collimated to a much greater extent (a  few degrees) than those produced by quantum 
point contacts. This is partially due to the presence of the applied electric field which 
accelerates the electron when it emerges from the tip over a macroscopic distance. 

Whether the tunnel barrier or the horn-like structure or both are the dominant 
mechanism for collimating the electron wave is important for the design of devices in 
which the spatial dimensions are comparable with the electron wavelength. To inves- 
tigate this problem on a quantitative level we solve the timedependent Schmdinger 
equation (TDSE) for an ideal atomic-size horn and demonstrate that the collimation 
effect due to the horn is small compared with that of the tunnel barrier. Our calculai 
tions also allow us to assess the applicability of the adiabatic approximation [I71 used 
to estimate the collimation factor of a horn. 

The problem of calculating the angular distribution of electron waves emitted 
by an ideal horn closely resembles the one encountered in the design of microwave 
or millimetrewave radiating horn-like components 1231. The standard technique for 
solving the corresponding wave equations is to represent the radiating component as a 
stepped waveguide and to match the modes at the waveguide step discontinuities, i.e. 
a transfer matrix approach. The numerical method employed in this article differs in 
many respects. Instead of solving a stationary wave equation we solve the TDSE for a 
wave packet incident on the throat of the horn and analyse the transmitted wave packet 
by projecting it onto a screen placed far away (many electron wavelengths) from the 
emitting aperture. Physically this setup is identical to the one used in experiments 
on atomic-size tips []-a], The TDSE approach can handle arbitrary potentials and 
therefore does not suffer from limitations on the size of the apertures and the length 
of the horn. It is numerically stable and convergent under all circumstances [24]. Its 
main limitation is that, due to memory and CPU requirements, realistic calculations 
can only be carried out for two-dimensional (2D) systems. However, these 2D models 
contain all the essential features of their 3D counterparts and therefore physical insight 
into the processes that govern the emission of the electron wave obtained from the 2D 
simulations applies to the 3D case as well. 
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2. Model and simulation technique 

The first step is to construct a model, i.e. to specify a potential, that contains the most 
prominent features of the horn. This model is solved by exact numerical integration 
of the corresponding timedependent Schrodinger equation [24]. Analysis of the time 
development of the wave packets should then allow us to study the collimation effect 
as a function of the model parameters. 

The basic idea is to solve the TDSE 

for a Hamiltonian of the form 

P2 
'H= -+ 2m V(,). 
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Figure 1. Geometry of the reverad horn used in TDSE simulations. 

For practical purposes it is convenient to express distances in units of A,, the relevant 
wavelength of the electron. Wavevectors are then measured in units of k, = 2x/X,, 
energies in units of E, = h2k:/2m, and time in units of hlE,. In these units equa- 
tions (2.1) and (2.2) read 

(2.3) 

(2.4) 

,A- .a$(r t )  - x$(r, t) 
at 

and 
V2 V(r) E=-- + -. 

(2*)2 EF 

The geometry of the model is depicted in figures 1 and 2. A horn is character- 
ized by its smallest width WO, its length L and its flare angle rp (or its aperture 
W = WO + 2Lsinrp). To examine the effect of mode selection by a constriction on 
the transmission properties of a horn we attach a constriction of length Lo and width 
WO to the horn. For the sake of brevity we will henceforth call this twc-component 
structure a ‘horn’. The potential V(r) is zero inside the horn and to  the left and right 
of i t ,  and very large (V(r) = lOOE, in practice) otherwise. Our motivation to study 
this ‘ideal’ horn instead of a horn in which the shape is a continuous function of the 
coordinates is twofold. First we can make contact, on a quantitative level, with other 
numerical work [lo, 111, thereby allowing us to compare the effect of different mechb 
nisms for collimating the electron waves. Second, although our simulation technique 
can handle smoothly changing potentials as easily as discontinuous potentials, the 
ideal horn studied in this work corresponds to a ‘worst-case’ situation and therefore 
yields information on the limiting values of properties such as the collimation factor. 

We will consider two different cases: first a wave incident at the largest aperture 
(figure 1) and second a wave entering the horn at the smallest aperture (figure 2). 
In many respects these two situations are complementary and therefore provide a 
consistency check on the simulation results and their interpretation. 

A convenient choice for the initial wave packet is 

(2.5) 
o: e ik r ( r -$ t iy s in  $) e -(=-za)’/~o:e-(y--yo)a/~9: 

$ ( Z , Y , t  = 0) 
i.e. a Gaussian wave packet centred around (zo, yo) with a width of u,(u,) in the z(y)- 
direction. In free space the wave packet would move in the (coa $, sin $)-direction. We 
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Figure 2. Geometry of the hom used in TDSE simulations. 

adopt the convention that the wave packet starts from the left of the horn and m o w  
to the right. In practice the initial wave packet is multiplied by a spatial window so 
that the probability inside and to the right of the horn is zero. 

The simulation consists in following the time evolution of the wave packet. In its 
most primitive form this means taking snap-shots of the probability distribution at 
regular time intervals. We simultaneously monitor the total probability transmitted. 
As a function of time, this probability becomes constant. For all practical purposes 
we may then regard the transmission of waves through the horn as completed. 

To analyse the angular distribution of the transmitted wave packet, we project it 
onto a screen placed far away from the object under investigation. The main idea is 
that, once the transmitted wave packet is sufficiently far from the potential, it moves 
in free space. In the appendix it is shown how to extract the angular distribution from 
an arbitrary wave packet (subject to a uniform electric field) moving in free space. In 
practice this amounts to Fourier transforming the transmitted wave packet and per- 
forming some integration operations. The resulting angular distribution corresponds 
to the image seen on the screen, as produced by field-emitted electrons for example. 

We end this section by giving some details on the simulation technique itself. In 
this work we have used a five-point difference formula for a 2 / a x 2  (and a2/av2) and a 
fourth-order real-space product formula to perform the time integration [24]. A spa- 
tial mesh size of 10 or 20 lattice points per wavelength A, was used. In combination 
with the five-point difference formula this assures sufficient accuracy, as comparison of 
results obtained from simulation with 6 = AF/10 and 6 = AF/20 shows. For 6 = XF/10 
(6 = Ap/20) the time-step r = 0.03125 ( r  = 0.015625) is small enough to guarantee 
that systematic errors resulting from the use of the product formula [24] are insignif- 
icant. Free boundary conditions (i.e. reflecting boundaries) were adopted. The size 
of the simulation box was typically 52AF x 26AF, but was occasionally made larger 
to accommodate the very large horns ( L  = 40AF), and sufficiently large to elimi- 
nate boundary effects. Fourier transforms of transmitted wave packets were carried 
out using 512 x 512 lattice points. A typical simulation run (135200 lattice points, 
6 = AF/lO, r = 0.03125 and 3072 time steps) takes about 10 min on the NEC SX-z 
computer. 
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Figure 3. Transmission T($) of a rrvased horn 
as a function of the angle of incidem $ for var- 
ious valuer of the horn length L and WO = AF, 
Lo = Ap/a, 9 = 20°. The value of T($) is noF 
malized to its N e s t  value. The dotted line in- 
dicates T($) = l /e .  

Figure 4. An& spread Am as a function of 
the apertm W of the hom, for various values of 
L. WO, 9 and Lo = XF/2, $ = 0'. 

3. Simulation results 

We first consider the reversed horn (figure 1) and concentrate on the influence of the 
angle of incidence $ on the transmission T($), for various lengths L of the horn. 
Due to  the reflection symmetry of the horn geometry with respect to the y-direction, 
T($) = T(-$).  The angle of incidence A$ at which the normalized transmission 
T(A$)  = l / e  characterizes the angular distribution for incoming waves of the reversed 
horn. 

As shown in figure 3, where T($) is plotted as a function of $, T($) decreases 
with increasing $. Making the horns longer reduces A$. However, the reduction of 
A$ is much less in going from horns of length L = A,, where A$ = 22O, to one of 
length L = 5AF, where A$ = 12", than in going from horns of length L = 51, to one 
of length L = IOA,, where A$ = 10'. This indicates that A$ is going to a constant 
value for very long horns. 

Next we consider the horn (figure 2 )  and investigate the connection between the 
geometry of the horn and the collimation of the electron wave packet. To characterize 
the collimation we calculate the angular spread A@, which is defined as A0 E - 0,( 
where el,, are determined such that the normalized angular distribution (see appendix) 
P(0,,,) = l/e. We define Aa A0/2, because due to the reflection symmetry of the 
horn with respect to the ydirection, P(B) for a positive value of the angle of incidence 
$ equals P ( 4 )  for -$. As our calculations for Aa are carried out for a fixed angle 
of incidence $ of the wave packet and not some superposition of waves coming from 
different directions, ACY is a lower limit to the angular spread of the electron beam. 
Our calculations for $ # 0 show that, in general, the values for Aa do not significantly 
depend on $, although the shape of the angular profile itself does. Therefore we may 
henceforth confine ourselves to a discussion of results for normal incidence $ = 0. 

In figure 4, where Aa is shown as afunction of the aperture W = WO +ZLsinp of 
the horn for fixed flare angles v, it is seen that horns with a large opening at the end 
are collimating much better than horns with a small opening at the end. However, 
at a certain aperture W the angular spread becomes constant. The smallest angular 
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spread is given by horns with a small flare angle (o, as illustrated by the curve for 
9 = 10'. This indicates that horns with a large aperture W and a small flare angle 
'p are good collimators. A horn with a flare angle 'p = 40° does not focus the wave 
packet, not even when the horn is made longer. This by itself is no surprise: The 
angular spread of a wave leaving a constriction (i.e. a horn of length L = 0) of width 
WO is approximately 40°, hence a horn having a flare angle of (o = 40n will have almost 
no effect on the expanding wave packet. 

The parameters affecting the collimation seem to be WO, Lo, L and (o. The influ- 
ence of the geometry of the constriction, i.e. of the length Lo and the width WO of 
the constriction, on the collimation of the wave packet is small, as shown in table 1. 
Increasing Lo by a factor 10 or increasing WO by a factor of 4 has no effect on the an- 
gular spread Aa. What remains to be studied in more detail is the influence of (o and 
L on Acr. From figure 5, which shows Acr BS a function of L for constant (o, it follows 
that long horns (largc L)  with a small flare angle focus the best, as exemplified by the 
case 'p = 10'. At  a certain length of the horn the angular spread reaches a limiting 
value. For a horn with length L = lox, and flare angle (o = 20°, this limiting vdue 
amounts to Aa = 10'. Such an effect was already seen in figure 3, where A$ = 10" 
for an identical reversed horn. This indicates that Am and All are strongly correlated. 
Indeed, A$ characterizes the angular distribution for the incoming wave packet of the 
reversed horn and Acr characterizes the angular distribution for the outgoing wave 
packet leaving the horn. Finally, we also learn from this figure that horns with a flare 
angle of 9 = 40' do not collimate at all (see earlier discussion). 
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Table 1. Inauence of the geometry of the constriction, i.e. of WO and &> on the 
angular spread Am. We have taken L = SAP, 'p = 20' and $ = 0'. 

WO/& L o l h  Am(deg) 

0.5 0.5 12 
1 0.5 11 
1 5 11 
2 0.5 11 

-- , 

1 
o 5 10 15 m 25 m 

~. 

L/hF 

Figure 5. Angular spread Am av a function of 
the horn lenglh L for various values of the flare 
angle v and HL = XF, Lo = A F / ~ ,  $=Om. 

0 5 10 15 20 25 30 35 40 
P 

Figure 6 .  Angular spread A- = a function of 
the flare angle 'p for various values of the horn 
length L and WO = AF. & = I \ F / ~ ,  $ = OD. 
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In figure 6, Aa is depicted as a function of ‘p for constant L values. Both curves 
show a minimum. For L = lox,, Aa reaches a minimum value at ‘p = 15O whereas 
for L = ZOA,, the smallest Aa is obtained for p = loo. This again illustrates that 
long horns with a small flare angle are good collimators. However, the optimal values 
of L and p are strongly correlated: For each length L there exists a flare angle ‘p such 
that Aa is minimal. 

4. Discussion 

Having presented the results of our simulations, we now want to explore the extent to 
which they can be understood in terms of simple theoretical models. From Fraunhofer 
diffraction theory, it follows that the intensity function for diffraction by a slit of width 
W reads 

where k, = %/A, and p = sin 1,6’ - sin $. Here I,6 denotes the angle of incidence of 
the wave and $’ the direction of observation. To make contact with the definition for 
Aa we take $’ = Am and set I(p) = I/e. This occurs at p = O.52AF/W, from which 

0.52AF 
WO + 2Lsinp 

Aa = arcsin 

for normal incidence of the wave packet (I,6 = 0’) and for W = WO + 2Lsin’p. This 
theoretical connection between Aa and W is included in figure 4 (dotted curve), where 
Aaisshownasafunct ionofthe aperture W = Wo+2Lsinpofthe horn. Fromfigure4 
it is seen that the collimation effect cannot be simply described by diffraction by a 
slit. A formula for Aa similar to (4.2) was derived by Van Houten el al [17]. Invoking 
semi-classical arguments they estimate the collimation factor of the horn, assuming 
adiabatic invariance of the product of the channel width W and the absolute value of 
the transverse electron momentum hk,, i.e. of the quantity S = Ihk,jW. At the horn 
entrance the largest possible value of S (in our units) is 

28 s - -W,i”. ’ - A, (4.3) 

Assuming that adiabatic transport holds up to a point of maximal width W,, 1171, 
the largest possible value of S at the horn exit is 

2% s - -Wmu sin amW. - A, (4.4) 

Here Wmin (Wmax) denotes the minimum (maximum) width of the horn structure and 
2am,, is the width of the injectionfacceptance cone. Adiabatic invariance of S implies 
that S, = S,, 50 that 

am= = arcsin Wmi,/W,, . 0 (4.5) 
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To establish the connection to our notation we set W,, = WO, W,,, = WO + 2L sin $9 

and CY,,, = Am. This results in 

I( Michielsen and H De Raedf 

Am = arcsin 

This expression for ACY is indeed very closely related to that in equation (4.2). For 
WO = A, both formulae are exactly the same, the factor 0.52 not being taken into 
account. This implies that for WO = A, the collimation effect cannot be described 
by equation (4.6), as indicated by the dotted curve in figure 4. From equation (4.6) 
it is seen that the angular distribution ACY has to depend on the width WO of the 
constriction which, as shown in table I, is not the case. 

We now turn to the applicability of the adiabatic approximation (slowly varying 
width of the horn). Rom geometrical considerations the largest =-value for which the 
adiabatic approximation is valid follows from [14, 151. 

a r r  
d'(z ) < - ' 4 2 d ( z , ) k ,  (4.7) 

where d' is the derivative of d with respect to I and 2d is the width of the aperture of 
the horn. In our notation, d(z)  = W0/2 + I tan $9 and zc = L, cos pc, which results in 

Taking WO = A, and 'p, = loo gives L, 6 3.5AF. For yc = 20' we find L, g O . l A F .  
As seen from figure 5, there is very little collimation for such short horns. Collimation 
occurs for much longer horns (L > A,), but then, according to equation (4.8), the 
adiabatic approximation is no longer valid. Clearly, the collimation effect for long 
horns cannot be described by the adiabatic approximation. 

5. Conclusions 

We have presented the results of extensive numerical simulations of electron wave 
packets transmitted by horns. A detailed quantitative analysis of the collimation of 
the electron wave by horn-like devices has demonstrated that the collimation effect 
cannot be described in terms of adiabatic wave expansion and semi-classical consider- 
ations. Our results allow us to assess the relative importance of horn-like structures 
in the metal-vacuum potential of atomic-size electron sources for the strong electron 
focusing observed experimentally. From all our figures it is clear that to get apprecia- 
ble collimation the horn should at least be 5X,. On the other hand the width of the 
metal-vacuum tunnel barrier surrounding the atomic-size tip is of the order of A, and 
our calculations do not reveal significant collimation for such short horns. The conclu- 
sion must be that for atomic-size electron sources the tunnel barrier is the dominant 
mechanism for collimating the electrons [IO]. 
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Appendix 

Here we derive the expression for the angular distribution on a screen placed far away 
from the source (the horn in the present case) that produced the wave packet. We 
assume that once the wave packet has been emitted, it moves in a uniform electric 
field. The Hamiltonian describing the motion of the wave packet reads 

Eo 2 0 .  (AI) 
‘H=-- -E,p  PZ 

2m 
To compute the time development of the wave packet we first decompose the propa- 
gator as 

exp ( F) -it% exp[ 2 (& - E,.)] 

(A21 
= exp (- 2) exp (2) exp (-E) exp (F) itxEo . 

We are interested in the situation in which the distance (I) between the origin and 
the screen is very large (macroscopic) compared with the spatial extent of the wave 
packet at t = 0. Then it is safe to assume /+I > IC’ + r ” / / 2  as the integration over T’ 

and T“ are over a microscopic region of space. Then (A4) reduces to 
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which by the convolution theorem is directly related to the Fourier transformed wave- 
function, i.e. 

K Michielsen and H De Raedl 

where we have dropped all irrelevant constants. 
The normalized angular distribution a t  the screen is given by 

(A71 

where V denotes the applied voltage (in units of volts) and tan0 = y/z. For the 
c a ~ e  at hand we have given all the expressions in two dimensions, extension to higher 
dimensions being trivial. 
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